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PLAN 

�• Announcements.  
�• 1.4 Course objective.  
�• 2.1 Newton�’s method and implications.  
�• 2.2 Computing Derivatives.  
�• 2.3 Linear Algebra.  
�• 2.4 Sparse Linear Algebra 



ANNOUNCEMENTS 

�• Homework.  
�• 01/11 office hour.  
�• Stop me at EXPAND and DEMO.  
�• I will try to post slides; MATLAB diary; 

homeworks; and software. If you cannot access 
them contact me. 



1.4 COURSE OBJECTIVES 



Types of minima 

�• which of the minima is found depends on the starting point 
�• such minima often occur in real applications 

x 

f(x) 
weak 
local 

minimum isolated 
global 

minimum 

isolated 
local 

minimum 

feasible region 



Summary LOCAL optimality 
conditions 

�• Conditions for local minimum of 
unconstrained problem:  

�• EXPAND: Geometry. 

�– First Order Necessary Condition: 

�– Second Order Sufficient Condition:   

�– Second Order Sufficient Condition:   

xx
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 xx
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minx f (x); f C 2



How about global optimality?  

�• There is no simple criterion; extremely hard 
question (most such problems are NP hard). 

�• One exception f is convex: 

�• But we will consider the general case.    

 xx
2 f 0 EVERYWHERE



Course objectives 

�• Derive efficient iterative algorithms to �“solve�” 
the problem (and its constrained form).  

�• Solve= guarantee convergence to a point that 
satisfies the NECESSARY conditions.  

�• Typically, if point also SUFFICIENT, then local 
convergence should be FAST (e.g. quadratic),  

�• NOTE: WE WILL DO NO SIMULATION.  

minx f (x); f C 2



2.1 Intro to Methods for Continuous 
Optimization: Newton�’ Method  

�• Focus on continuous numerical optimization 
methods 
�• Virtually ALL of them use the Newton 

Method idea 



Newton�’s Method 

�• Idea in 1D:  
�– Fit parabola through 3 points, find minimum 
�– Compute derivatives as well as positions, fit cubic 
�– Use second derivatives: Newton by means of 

Taylor expansion at the current point.  



Newton�’s Method 

�• At each step: 

�• Requires 1st and 2nd derivatives 

minx
1
2
x xk( )2 f (xk )+ f (xk ) x xk( ) + f (xk )

xk+1 = xk
f (xk )
f (xk )

Interpolating Poly (Taylor) 



Newton�’s Method 



Newton�’s Method 



Newton�’s Method 



Newton�’s Method 



Newton�’s Method in 
Multiple Dimensions 

�• Replace 1st derivative with gradient, 
2nd derivative with Hessian 



Newton�’s Method in 
Multiple Dimensions 

�• Replace 1st derivative with gradient, 
2nd derivative with Hessian 

�• So,  xk+1 = xk H 1(xk ) f (xk )
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RECAP: Taylor Series 

�• The Taylor series is a representation of a 
function as an infinite sum of terms 
calculated from the values of its derivatives 
at a single point. It may be regarded as the 
limit of the Taylor polynomials 



Recap: Multi-dimensional Taylor expansion  

A function may be approximated locally by its Taylor series expansion 
about a point x* 

where the gradient         is the vector 

and the Hessian H(x*) is the symmetric matrix 

Q: What is a residual bound? How would you prove it from 1D?  



Recap: Orders of convergence 

�• R-convergence and Q-convergence.  
�• EXPAND 

�• Q: Which order of convergence is desirable? 
Why?  



Newton�’s Method in 
Multiple Dimensions 

�• EXPAND: Justify by Quadratic 
Approximation, and sketch quadratic 
convergence. 

�• Tends to be extremely fragile unless function 
very smooth and starting close to minimum.  

�• Nevertheless, this iteration is the basis of most 
modern numerical optimization.  



Newton Method: Abstraction and 
Extension 

�• �“Minimizing a quadratic model iteratively�” 
�• EXPAND 



NM Implementations 

�• Descent Methods,  Secant Methods may be 
seen as �“Newton-Like�” 

�• All �“Newton-like�” methods need to solve a 
linear system of equations. 

�• All �“Newton-like�” methods need the 
implementation of derivative information 
(unless a modeling language provides it for 
free, such as AMPL). .   



2.2  Computing Derivatives 

�• Three important ways.  
�• 1. Hand Coding (rarely done and error prone). 

Typical failure: do the physics, ignore the design 
till it is too late.  

�• 2. Divided differences.  
�• 3. Automatic Differentiation.  



The formulas developed next can be used to estimate the value of a derivative at a 
particular value in the domain of a function, they are primarily used in the solution of 
differential equations in what called finite difference methods. 

Note: There a several ways to generate the following formulas that approximate f '(x). 
The text uses interpolation. Here we use Taylor expansions. 

2.2.1. Divided Differences 

Note that the last formula also applies in multiple dimensions, if I perturb one  
coordinate at the time. EXPAND 



Forward Difference Approximation  

Subtract f(x0) 
from both sides 
& divide by h. 



Finite Differences 

�• Nevertheless, we use forward differences, 
particularly in multiple dimensions. (Q: How 
many function evaluations do I need for 
gradient? ) 

�• Q: How do we choose the parameter h? 
EXPAND 

�• DEMO. 
�• EXPAND Multiple Dimension Procedure.  



2.2.2 Automatic  Differentiation 

�• There exists another way, based upon the chain 
rule, implemented automatically by a �“compiler-
like�” approach.  

�• Automatic (or Algorithmic) Differentiation 
(AD) is a technology for automatically 
augmenting computer programs, including 
arbitrarily complex simulations, with statements 
for the computation of derivatives 

�• In MATLAB, done through package �“intval�”. 



Automatic Differentiation (AD) in a 
Nutshell 

�• Technique for computing analytic derivatives 
of programs (millions of loc) 

�• Derivatives used in optimization, nonlinear 
PDEs, sensitivity analysis, inverse problems, 
etc. 



Automatic Differentiation (AD) in a 
Nutshell 

�• AD = analytic differentiation of elementary 
functions + propagation by chain rule 
�– Every programming language provides a limited 

number of elementary mathematical functions 
�– Thus, every function computed by a program may 

be viewed as the composition of these so-called 
intrinsic functions 

�– Derivatives for the intrinsic functions are known 
and can be combined using the chain rule of 
differential calculus 



Automatic Differentiation (AD) in a 
Nutshell 

�• Associativity of the chain rule leads to many 
ways of combining partial derivatives, 
including two main modes: forward and 
reverse 

�• Can be implemented using source 
transformation or operator overloading 



Accumulating Derivatives 

�• Represent function using a directed acyclic 
graph (DAG) 

�• Computational graph 
�– Vertices are intermediate variables, annotated with 

function/operator 
�– Edges are unweighted 

�• Linearized computational graph 
�– Edge weights are partial derivatives 
�– Vertex labels are not needed 

�• EXPAND: Example 1D case, + reverse. 



A Small Example 

... lots of code... 
a = cos(x) 
b = sin(y)*y*y 
f = exp(a*b) 
... lots of code... 

Forward mode: 9 + 12p 

a = cos(x) 
  dadx = -sin(x) 
  g_a(1:p) = dadx*g_x(1:p) 
tmp1 = sin(y) 
  d1dy = cos(y) 
  g_1(1:p) = d1dy*g_y(1:p) 
tmp2 = tmp1*y 
  g_2(1:p) = y*g_1(1:p)+tmp1*g_y(1:p) 
b = tmp2*y 
  g_b(1:p) = y*g_2(1:p)+tmp2*g_y(1:p) 
tmp1 = a*b 
  g_1(1:p) = b*g_a(1:p)+a*g_b(1:p) 
f = exp(tmp1) 
  g_f(1:p) = f*g_1(1:p) 

New algorithm: 17 + 3p 

a = cos(x) 
  dadx = -sin(x) 
tmp1 = sin(y) 
  d1dy = cos(y) 
tmp2 = tmp1 * y 
b = tmp2*y 
f = exp(a*b) 
  adjx = f*a*dadx 
  adjy = f*a*(tmp2 + y*(tmp1 + d1dy*y)) 
  g_f(1:p) = adjx*g_x(1:p)+adjy*g_y(1:p)  

ADIC mode: 11 + 5p 

a = cos(x) 
  dadx = -sin(x) 
  g_a(1:p) = dadx*g_x(1:p) 
tmp1 = sin(y) 
  d1dy = cos(y) 
tmp2 = tmp1*y 
b = tmp2*y 
  adjy = y*y*d1dy + y*tmp1 + tmp2 
  g_b(1:p) = adjy*g_y(1:p) 
f = exp(a*b) 
  adja = f*b 
  adjb = f*a 
  g_f(1:p) = adja*g_a(1:p)+adjb*g_b(1:p) p independents 

Preaccumulation: 
�•Reduces flops (factor 2 or more) 
�•Reduces memory requirements (adjoint mode) 
�•Optimal strategy can reduce flops by another 
factor of 2 y x 

* 

sin 

cos 

* 
* 

exp 

... 

... 

q dependents 

a 

b 

f 

a 

cos(y) 

f 

t2 

-sin(x) 

y 

y t1 

b 

y x 

... 

... 

q dependents 

f 

adjy adjx 

y x 

... 

... 

q dependents 

a 

b 

f 

adjy 

-sin(x) 

adja 

adjb 



A simple example 

b = sin(y)*y 
a = exp(x) 
c = a*b 
f = a*c 
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A simple example 

t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
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Vertex elimination 

f 

a 

c 

b 

a 

�• Multiply each in edge by each out edge, 
add the product to the edge from the 
predecessor to the successor 

�• Conserves path weights 
�• This procedure always terminates 
�• The terminal form is a bipartite graph 



Vertex elimination 

f 
�• Multiply each in edge by each out edge, 

add the product to the edge from the 
predecessor to the successor 

�• Conserves path weights  
�• This procedure always terminates 
�• The terminal form is a bipartite graph 

a*a 
c + a*b 



Forward mode: eliminate vertices in 
topological order 
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t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
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Forward mode: eliminate vertices in 
topological order 
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t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
d1 = t0 + d0*y 
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Forward mode: eliminate vertices in 
topological order 
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t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
d1 = t0 + d0*y 
d2 = d1*a 
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Forward mode: eliminate vertices in 
topological order 

x y 

f 

d4 

d2 d3 
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t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
d1 = t0 + d0*y 
d2 = d1*a 
d3 = a*b 
d4 = a*c 

v4 



Forward mode: eliminate vertices in 
topological order 

x y 

f 

dfdx dfdy 

t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
d1 = t0 + d0*y 
d2 = d1*a 
d3 = a*b 
d4 = a*c 
dfdy = d2*a 
dfdx = d4 + d3*a 

6 mults 2 adds 



Reverse mode: eliminate in reverse 
topological order 
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d0 = cos(y) 
b = t0*y 
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Reverse mode: eliminate in reverse 
topological order 
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t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
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Reverse mode: eliminate in reverse 
topological order 
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t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
d1 = a*a 
d2 = c + b*a 
d3 = t0*d1 
d4 = y*d1 
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Reverse mode: eliminate in reverse 
topological order 

y x 

f 

d2 

dfdy 

a 

t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
d1 = a*a 
d2 = c + b*a 
d3 = t0*d1 
d4 = y*d1 
dfdy = d3 + d0*d4 

v3 



Reverse mode: eliminate in reverse 
topological order 

x y 

f 

dfdx dfdy 

t0 = sin(y) 
d0 = cos(y) 
b = t0*y 
a = exp(x) 
c = a*b 
f = a*c 
d1 = a*a 
d2 = c + b*a 
d3 = t0*d1 
d4 = y*d1 
dfdy = d3 + d0*d4 
dfdx = a*d2 

6 mults 2 adds 



Forward gradient Calculation 

�• Forward mode computes  
�– At a cost proportional to the number of 

components of f. 
�– Ideal when number of independent variables is 

small 
�– Follows control flow of function computation 
�– Cost is comparable to finite differences (can be 

much less, rarely much more) 

f ; f :Rn Rm



Forward versus Reverse 

�• Reverse mode computes  
�– At a cost proportional to m 
�– Ideal for JTv, or J when number of dependent 

variables is small  
�– Cost can be substantially less than finite 

differences 

�• COST IF m=1 IS NO MORE THAN 5* 
COST OF FEVAL. EXPAND. 

J = f ; f :Rn Rm



AD  versus divided differences 

�• AD is preferable whenever implementable.  
�• C, Fortran versions exist.  
�• In Matlab, free package INTVAL (one of the 

main reasons not doing C). DEMO 
�• Nevertheless, sometimes, the source code 

DOES not exist. (e.g max likelihood).  
�• Then, divided differences.  


